
A Bayes Factor for Replications of ANOVA Results

Christopher Harms1,*

1 Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

* christopher.harms@uni-bonn.de

Abstract

With an increasing number of replications in psychological science, the question
of how to evaluate the outcome of a replication attempt deserves careful consid-
eration. Different approaches have been described before. Bayesian approaches
allow to incorporate prior information into the analysis of the replication at-
tempt by their design. The Replication Bayes Factor, introduced by Verhagen
and Wagenmakers (2014), is outlined and extended to F -tests in multi-group,
fixed-effect ANOVA designs. Derivation of likelihood functions and compu-
tational strategies are explained. Simulations and examples are presented to
facilitate the understanding and in order to demonstrate the usefulness of this
approach. The Replication Bayes Factor for F -tests is discussed in the context
of evaluating replication attempts and compared to other approaches.

1 Introduction

The so-called ”replication crisis” has led to an increased focus on matters of
replicability and replication studies (Asendorpf et al., 2013). One of the central
questions of a replication attempt is the final evaluation, that is, the question
”Did it replicate?”.

While the question by itself and the reasoning might seem easy, there is
an ongoing discussion of how to actually answer it (Anderson and Maxwell,
2016; Simonsohn, 2015; Verhagen and Wagenmakers, 2014). The traditional
and most commonly used approach relies merely on the evaluation of p-values
and significance across manipulations, that is, the investigator checks if his
replication yields the same pattern of significant results as the original study. A
single focus on this approach, however, has two major limitations: First, it relies
on p-values, that can easily be ”hacked” in both the original and the replication
study (Simmons et al., 2011). And second, it is uninformative about the true
size of the effect.

Different approaches to evaluating replication results have been introduced
in recent years: Simonsohn (2015) proposed an approach taking the effect size
of the original study and a ”minimal detectable effect” into consideration. Con-
fidence intervals for effect size measures have been repeatedly advocated by
Cumming (2012). Mixing those strategies have been recommended by Brandt
et al. (2014) and Anderson and Maxwell (2016) among others. A different ap-
proach is to take a Bayesian perspective and use Bayes Factors for hypothesis
testing (see Morey et al. (2016) for an introduction on Bayesian hypothesis test-
ing). One approach from this line of thinking has been introduced by Verhagen
and Wagenmakers (2014) and termed Replication Bayes Factor.
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The present article focuses on this Bayesian perspective and extends the
Replication Bayes Factor to the case F -tests in fixed-effect ANOVA designs. In
order to do so, first the Bayesian perspective is outlined and how it is applied
to replication studies. In the second section it is shown how the Replication
Bayes Factor can be used in the context of fixed-effects ANOVAs. Simulations
and example studies are followed by a discussion of the method.

2 A Bayesian Perspective of Replications

Already before the so-called ”replication crisis”, Bayesian approaches to data
analysis have been recommended by proponents to overcome problems with tra-
ditional Null Hypothesis Significance Testing (NHST; Lindley, 1993; Edwards
et al., 1963). With advances in computational capabilities and statistical soft-
ware packages, Bayesian statistics today are more accessible than ever before.
Since traditional NHST is still the only approach taught at many universities,
however, many junior and senior researchers are yet unfamiliar with Bayesian
methods. The general principles of the Bayesian framework in the context of the
Replication Bayes Factor is outlined in the following section. Far more detailed
and educational literature on Bayesian statistics in general and Bayes Factors
in particular is available (McElreath, 2016; Rouder et al., 2012; Morey et al.,
2016; Kruschke, 2015).

Fundamental and name-giving to the Bayesian approach is Bayes’ theorem,
which shows how conditional and unconditional probabilities are related to each
other:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

There are different philosophical and practial interpretations of Bayes’ theorem
and Bayesian statistics. In this paper, the focus is on a process termed Bayesian
updating : If Equation 1 is rephrased as

Posterior ∝ Likelihood× Prior

empirical data, expressed through their respective likelihood, can be used to
update some prior belief to a posterior belief. This implicates some understand-
ing of probabilities as ”degrees of belief” or ”subjective probability”. It is to
note, however, that many statistical applications of this have both frequentist
and Bayesian interpretations. The current paper will not go into further detail
about the consequences of this terminology and the philosophical implications.

Imagine a scientist, Sam, who is new to a particular field of research. She
might start to read books, papers and blog articles to get an understanding
of the current state of the field and learn about some popular effect. Before
reading the first paper on this particular phenomenon, she might be seen as
”uninformed”, i.e. she believes that any outcome of an experiment is equally
likely. After reading the paper, though, her beliefs probably have shifted: She
might now be more inclined to believe that the effect described truly exists.
However, she already knows that no single experiment is sufficient to ultimately
rule out false positives, so there is still some subjective belief (larger than null)
in the non-existence of the effect. With her current belief in the effect she reads
another paper and, again, updates her belief about the effect according to the
published results.
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This example illustrates the basic idea of Bayesian updating. It also transfers
well to the context of replications: as researchers we have some prior knowledge
of an effect, formed through our own experiments and published research. This
prior knowledge plays an important role when we consider a new study. With
Bayes Factors a statistical tool is available, that tells researcher to what quan-
titative extent a prior belief should be updated.

The central idea is, to put in other words, to incorporate existing, previous
knowledge about the world in the interpretation of new incoming evidence.
This is particularly useful in the context of replications as information from an
original experiment is taken into account when evaluating the results from a
replication study.

Bayes Factors compare the support in some data in favor of a model 1 when
compared to another model 2. They are one way to evaluate hypothesized
models in the Bayesian framework in a quantitative manner. Morey et al. (2016)
have described them as ”quantification of statistical evidence”. At its core, they
are an odds ratio that is formally written as

BF10 =
p(Data|H1)

p(Data|H0)
(2)

The Bayes Factor BF10 can be interpreted directly from its quantitative
value: Values > 1 tell how much more likely the data are under the model
of H1, while values < 1 express how much more likly the data are under the
model implied by H0. This is in contrast to traditional p-values which cannot
be interpreted in a similar continuous manner (Dienes, 2016, 2011). Bayesian
hypothesis testing using Bayes Factors have become quite popular in the recent
years as an addition or alternative to the traditional Null Hypothesis Significance
Testing using p-values (e.g. Rouder et al., 2012; Rouder and Morey, 2012; Rouder
et al., 2009).

2.1 Bayes Factors for Replications

The Replication Bayes Factor introduced by Verhagen and Wagenmakers (2014)
is a way to use the Bayesian framework in the context of replications and quan-
tify the result of a replication attempt. It defines two models that are charac-
terized by two positions and their respective prior beliefs about some effect size
measure δ:

1. The first model, H0, is the position of a skeptic, who does not believe in
the original finding. Formally, H0 : δ = 0.

2. The second position is one of a proponent of the effect. The proponent has
some belief in the original study and the postulated effect: Hr : δ ≈ δorig.
That means, the posterior distribution of the original study is used as a
prior distribution to the replication attempt.

The Replication Bayes Factor Br0 can then be formally described as (Ver-
hagen and Wagenmakers, 2014, p. 1461):

Br0 =
p(Yrep|Hr)

p(Yrep|H0)
(3)
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Where Yorig denotes the data from the original study and Yrep the data from
the replication attempt.

But, what exactly is ”the data”? Ideally, likelihoods would be calculated
based on a specific probabilistic model using the raw data from both studies.
However, often only summary and test statistics are available for the original
study. Thus, in the outlined approach it is desired to use only reported test
statistic of the original (Yorig) and the replication study (Yrep) respectively.
Verhagen and Wagenmakers (2014) have described the procedure for calculating
Br0 for the case of t-tests in both the original study and the replication attempt.
Their intuition is outlined next as it is the basis for the extension to F -tests.

First, the likelihoods for the two contrasted perspectives are to be defined
and calculated: For the skeptic (the nominator term in the Bayes Factor), the
likelihood is represented by the central t-distribution evaluated at the observed
t-value: p(Yrep|H0) = tdf (tobs). This makes the skeptic’s position a point hy-
pothesis.

For the proponent, the information from the original study is used. That
means, from a Bayesian perspective, the posterior distribution of the original
is to be defined first. Starting with a uniform prior distribution for the orig-
inal study, the posterior of a study with a t-test is a mixture of noncentral
t-distributions. This distribution was described as Λ′-distribution by Lecoutre
(1999) and can be approximated through a normal distribution.1 This posterior
distribution is then used as a prior to the replication study, denoted by p(δ|Hr).
For the denominator of the Bayes Factor, the computation of a marginal likeli-
hood across all possible values of δ is required:

p(Yrep|Hr) =

∫
p(Yrep|δ,Hr)p(δ|Hr)dδ (4)

To approximate the marginal likelihood, Verhagen and Wagenmakers (2014)
repeatedly drew samples from the prior and calculated the average of the term.

This completes the necessary steps to calculate the Bayes factor and leaves
us with this formular for the Replication Bayes Factor in the case of t-tests:

Br0 =

∫
p(Yrep|δ,Hr)p(δ|Hr)dδ

tdf (tobs)
(5)

In their paper, Verhagen and Wagenmakers (2014) use simulation studies and
examples to show the usefulness of the Replication Bayes Factor and to compare
it to other Bayes Factors that might also be used for replication studies. Since
many studies in psychological research are not one- or two-sample designs but
ANOVA designs, there seems to be a need to extend this approach to other
tests such as F -tests. The following section show how to define and calculate
the Replication Bayes Factor for F -tests in fixed-effects ANOVA designs.

3 Replication Bayes Factor for F -tests

The following section extends the Replication Bayes Factor to F -tests in the
context of ANOVA designs and deduces the steps necessary to calculate it.

1The technical details of two approximation approaches are explained in the appendix of
Verhagen and Wagenmakers (2014).
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The general idea and the contrasted perspectives of the Replication Bayes
Factor should remain unchanged. So, again, two hypotheses are defined:

• The position of a proponent, Hr, with a belief of f2 ≈ f2
orig.

• The position of a skeptic, H0, who expects f2 = 0.

As effect size measure for the case of F -tests Cohen’s f2 was selected since
it can be calculated from a given F -value and has some conveniently simple
relationship to the noncentrality parameter λ of the noncentral F -distribution
(Steiger, 2004) in the case of fixed-effects models. Steiger (2004) and Lakens
(2013) have detailed various effect size measures and compared their usefulness
in different settings.

The skeptic’s position as a point hypothesis is again simply given by the
central F -distribution evaluated at the observed F -value in the original study:
p(Yrep|H0) = Fdfeffect,dferror(Frep).

While the deduction of the proponent’s position is given in a similar manner
as in the case of t-tests, some differences exist. First, the posterior distribution
of the original study with with available Forig(df1, df2) needs to be defined, so
it can then be used as a prior to the replication study.

3.1 Finding the Posterior from the Original Study

Again, an flat, uniform prior on the effect size f2 is used for the original study,
i.e. all positive values are equally likely before the first study is conducted.
Through Bayes’ rule it is known:

Posterior ∝ Likelihood× Prior

Since the prior is uniform, the posterior distribution is equal to the normal-
ized likelihood, which in turn is a mixture of noncentral F -distributions.

To find the noncentrality parameter for each of the distributions in the mix-
ture, the observed F -value Fobs will be used: Entering η2

p = Fobs×dfeffect
Fobs×dfeffect+dferror

(Lakens, 2013) in f2 =
η2p

1−η2p
(Steiger, 2004) gives us a way to calculate f2

directly from observed value Fobs and known dfeffect and dferror:

f2 =
Fobs × dfeffect

dferror
(6)

From a given effect size f2 and known total sample size N the noncentrality
parameter λ of the noncentral F -distribution follows through

λ = f2 ×N (7)

The (non-normalized) likelihood L is then given by:

L(λ|Yorig) = Fλ(dfeffect, dferror) (8)

⇒L(f2|Yorig) = Ff2×N (dfeffect, dferror) (9)

Leading to the posterior for f2

p(f2|Yorig) =
L(f2|Yorig)p(f2)∫
L(f2|Yorig)p(f2) df2

(10)
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Figure 1: Normal approximation (grey line) for the true posterior distribution
(black line) of Cohen’s f2. Fobs(1, 28) = 10.0 in a one-way ANOVA design with
2 groups and 30 participants.

As the prior p(λ) = p(f2) is uniform and indepedent of values of λ or f2, this
is equal simply to the normalized likelihood function.

While in the case of a mixture of noncentral t-distributions, the resulting
posterior distribution can be approximated through a normal distribution, this
does not yield a good approximation in our case. Visually, this can be seen from
the example in Figure 1: the resulting posterior distribution is positively skewed
and the tails do not match the normal distribution. The posterior distribution
for the case of a F -test was named Λ2-distribution by Lecoutre (1999) and
could be calculated through an iterative algorithm introduced by Poitevineau
and Lecoutre (2010).

However, there is also another way to approximate a distribution and gener-
ate random independent and identically distributed samples from it (what will
later be done to approximate the marginal likelihood in the Bayes Factor): The
Metropolis-Hastings algorithm, a ”Markov Chain Monte Carlo” (MCMC) tech-
nique, allows to sample directly from the posterior distribution in cases like this
where the distribution might inconvenient to handle otherwise (Chib and Green-
berg, 1995). The Metropolis-Hastings algorithm takes a random walk through
the parameter space, i.e. all possible values for λ, using a proposal distribution
for the next state at which the procedure is then repeated. The introduction of
MCMC techniques such as Metropolis-Hastings and other algorithms have led
to new possibilities in the application of Bayesian statistics Hitchcock (2003);
Han and Carlin (2001). In this context, statistical packages such as JAGS or
Stan (Gelman et al., 2015) are commonly used. The present case, however, is
rather simple in its nature as it only involves a single parameter and an uni-
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modal posterior distribution. Thus, the Metropolis-Hastings algorithm should
be sufficiently efficient.2

One of the benefits of Metropolis-Hastings is, that it directly gives samples
from the posterior distribution, which can directly be used to approximate the
marginal likelihood for the proponent’s model, Hr, by averaging the likelihood
over the prior samples. This method of approximating the marginal likelihood
was used by Verhagen and Wagenmakers (2014) and was reiterated above. It
should be noted, however, that this is not the best or most efficient way to
calculate the marginal likelihood. In a comparative review Bos (2002) showed
that this approach can be unstable in some cases and is generally inefficient.
Chib and Jeliazkov (2001) detailed a method to use the output from Metropolis-
Hastings to approximate the marginal likelihood in a more efficient way when
parameters can be separated into blocks. But, again, as the present case involves
only one parameter and is generally simple in nature, the approximation using
samples from the prior distribution (i.e. the posterior of the original study)
and averaging the likelihood times the prior across all samples from the prior is
considered sufficiently precise for the question at hand.

Next, the steps to calculate the Replication Bayes Factor for F -tests in fixed-
effect ANOVAs are summarized.

3.2 Calculating the Replication Bayes Factor for F -tests

The Replication Bayes Factor was defined as (Verhagen and Wagenmakers,
2014):

Br0 =
p(Yrep|Hr)

p(Yrep|H0)
(11)

=

∫
p(Yrep|δ,Hr)p(δ|Yorig) dδ

p(Yrep|H0)
(12)

In the case of ANOVA designs this transforms into

Br0 =

∫
Fdfeffect,dferror,f2×N (Frep)p(f2|Yorig) df2

Fdfeffect,dferror(Frep)
(13)

By drawing M random samples from the posterior p(f2|Yorig) the marginal
likelihood and the Bayes Factor can be approximated:

Br0 ≈
1

M

M∑
i

Fdfeffect,dferror,λ(i)(Frep)

Fdfeffect,dferror(Frep)
, λ(i) ∼ p(f2|Yorig)

Nrep
(14)

The resulting Bayes Factor can then be interpreted based on its quantitative
value: Br0 > 1 is evidence in favor of the proponent’s hypothesis, i.e. evidence in
favor of a true effect of a similar size, while a Br0 < 1 is evidence against a true
effect of similar size. The more the Bayes Factor deviates from 1, the stronger
the evidence. It might be helpful to use the commonly used boundaries of 3 and

2In the supplemental R script, the MCMCmetrop1R function from the MCMCpack package was
used.
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1
3 for sufficient evidence: 1

3 < Br0 < 3 is weak evidence for either hypothesis
(Jeffreys, 1961, p. 432) and should lead the researcher to collect further data to
strengthen the evidence.3

4 Simulation Studies

The following section builds on the Replication Bayes Factor for F -tests out-
lined in the previous sections and aims to answer two questions using simulation
studies: First it is shown, that approximation to the original’s posterior distri-
bution using the Metropolis-Hastings algorithm yields similar results as the
normal approximation by Verhagen and Wagenmakers (2014) for the case of
t-tests. Second, the relationship between the Replication Bayes Factors for t-
and F -tests is investigated.

4.1 Simulation 1

Verhagen and Wagenmakers (2014) have shown that a normal approximation is
very close to the true posterior distribution of an original study with a given t-
value. However, for the case of F -tests this is not true as shown above. Thus, the
Metropolis-Hastings algorithm (MH) was introduced to generate samples from
an approximation of the posterior distribution. Using the resulting samples
from the MH algorithm as prior samples allows to approximate the marginal
likelihood in the Replication Bayes Factor.

To show that this in fact leads to a correct value of the Replication Bayes
Factor, simulations were conducted. In each simulation two independent sam-
ples are randomly generated each for an original and a replication studies. The
replication attempt is then quantified using (a) the Replication Bayes Factor
for t-tests by Verhagen and Wagenmakers (2014) using a normal approxima-
tion and (b) the Replication Bayes Factor for t-tests using the M-H algorithm.
If the resulting Bayes Factors are equal or at least very similar to each other
(some random variation is to be expected from random sampling), this is some
technical proof of concept to the introduced approach.

The simulations were set up as follows: For four different sample sizes in
an original study (norig = 10, 15, 20 and 50 per group), three different group
sizes in a replication study (nrep = 20, 50, 100 participants per group) and six
different true population effect sizes (d = 0, 0.1, 0.3, 0.5, 0.7 and 1) 100 runs
each are simulated, if nrep ≥ norig. For each simulated pair of original and
replication, samples from a normal distribution with means µ0 = 0 and µ1 = d
and standard deviation σ = 1 for both the original and the replication study are
generated. For both studies then, t-values and two Replication Bayes Factors are
calculated: First, the Replication Bayes Factor for two-sample t-tests according
to Verhagen and Wagenmakers (2014) using a Normal approximation to the
posterior distribution of the original study and second, the same Bayes Factor
using Metropolis-Hastings.

The results of the simulations are shown in Figure 2: each shape represents
two Bayes Factors from a single simulation run. The red lines indicate the

3It is a notable feature of Bayes Factors to allow for sequential testing as more data is
collected (Schönbrodt et al., 2015; Edwards et al., 1963). Another property of the Bayes
Factor that is not valid for p-values.
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Figure 2: Results for simulation study 1: 100 simulated runs of one original
and one replication study with two independent groups in different scenarios,
evaluated with Br0 using the normal versus MCMC approximation to the pos-
terior of the original study. Each symbol represents a single simulation run, i.e.
the Bayes Factors for one original and one replication study. Red lines indicate
Br0 = 3 and Br0 = 1/3, blue line indicates equality of both approaches. Axes
are log10-scaled. Results for both methods are very similar (r = .99982, across
all scenarios).
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common boundaries of 3 and 1/3 for interpretation of the Bayes factors. The
blue line represents the exact equality of the two Bayes Factors. As can be seen
from visual inspection and numerically from r = .99982 (across all 6600 runs),
both methods correlate nearly perfectly. While the mean difference between the
two approaches seems to be very high (−1.20173 · 1012), this is mainly driven
by the large Bayes Factors for configurations with d = 1. More informative is
the mean ratio, which is close to 1 (

Br0,norm

Br0,MCMC
= 1.00692). This indicates, that

the Metropolis-Hastings algorithm leads to very similar results as the original
Replication Bayes Factor using a normal approximation to the original study’s
posterior distribution. In cases where a normal approximation is not available
– as in the case for a Replication Bayes Factor for F -tests from a fixed-effect
ANOVA –, Markov Chain-Monte Carlo methods such as Metropolis-Hastings
thus are a useful and valid alternative.

4.2 Simulation 2

In the context of significance testing, it is a known relationship that the F -tests
from a one-way ANOVA with two groups yield the same p-values as a two-
sample t-test, when F = t2 is used. Accordingly, the Replication Bayes Factor
for F -tests should have a similar magnitude as the Replication Bayes Factor for
t-tests when used for the same dataset.

However, from investigation of the Likelihood functions it is apparent, that
exactly identical results are not to be expected. This is (a) because δ and
f2 are different types of effect size measures and (b) because the Λ′- and Λ2-
distributions are different in shape (see Figure 3). Further, as samples are ran-
domly sampled from posterior-becoming-prior distribution, some random vari-
ance in the resulting Br0 is again to be expected. It is, nevertheless, expected
that the magnitude in both cases is very similar, so the same conclusions would
be reached.

The simulated samples and t-values from simulation 1 are re-used. That is,
there are 100 simulations for four different sample sizes in the original (norig =
10, 15, 20 and 50 participants per group) and three sample sizes in the replication
study (nrep = 20, 50, 100, whereas the simulation is only performed if nrep ≥
norig) and six different effect sizes (d = 0, 0.1, 0.3, 0.5, 0.7 and 1). This time,
the Replication Bayes Factor for two-sample t-tests with the Replication Bayes
Factor for F -tests outlined in this article are compared. In particular, each
Fobserved = t2oberseved.

As can be seen from Figure 4, again, both Bayes Factors are strongly corre-
lated (r = .99270 across all 6600 runs) as expected. What is barely visible in
the figure, however, is that the ratio between the two Bayes Factors is close to
2 (

Br0,t

Br0,F
= 2.10952). That means, that the Replication Bayes Factor is about

half the size when using the F -statistic instead of the t-statistic.
This is a direct consequence of the transformation performed and to be

expected: The F -statistic does not convey information about the direction of
the difference anymore, something the t-statistic does through its sign. It is
easy to see that the Bayes Factor therefore cannot represent the same strength
of evidence. The consequences are further investigated in the Discussion.
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Figure 3: Comparison of posterior distributions: The posterior of an original,
two-sample study with two groups, n = 20 each, resulting in tobs = 2.18 is
plotted with solid lines. Normal approximation (blue) and Metropolis-Hastings
(red) come to identical estimates of the true posterior. Plotted with a dashed
line is the posterior distribution of the original study when Fobs = t2obs = 4.7524
is used.

11



Figure 4: Results for simulation study 2: 100 simulated runs of one original
and one replication study with two independent groups in different scenarios,
evaluated with Br0 for t- versus F -tests both using Metropolis-Hastings to sam-
ple from the posterior of the original study. Each symbol represents a single
simulation run, i.e. the Bayes Factors for one original and one replication study.
Red lines indicate Br0 = 3 and Br0 = 1/3, blue line indicates equality of both
approaches. Axes are log10-scaled. Results for both methods are very similar
(r = .99270, across all scenarios).
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5 Examples

In this section the Replication Bayes Factor for F -tests is applied to two example
replication attempts.

5.1 Example 1

The first example is the original study by Goschke and Dreisbach (2008) on
”conflict-triggered goal shielding”. Theur study was replicated as part of the
”Reproducibility Project: Psychology” (Open Science Collaboration, 2015) by
Marco Perugini and Giulio Constantini from the University of Milan-Bicocca.
The data, materials and replication report are available at https://osf.io/

pnius/.
Goschke and Dreisbach (2008) found a significant two-way interaction be-

tween the independent variables Compatibility (compatible vs. incompatible)
and Prospective Memory (PM) cue dimension on the ”mean proportion of
missed PM cues” in a sample of 40 subjects (F (1, 38) = 6.21, prep = .927 which
equals p = .0172, η2

p = .140 which corresponds to f2 = .163). The replication
by Perugini & Constantini did also find a significant interaction between Com-
patibility and PM cue dimension on the dependent variable (F (1, 93) = 18.94,
p = 3.46 · 10−5 < .001, η2

p = 0.169 which corresponds to f2 = .203) in their
sample of 95 participants. This was considered a successful replication in the
context of the Reproducibility Project.4

Using the reported teststatistics, the Replication Bayes Factor outlined in
this article can be calculated. This yields Br0 = 1654.096, which is overwhelm-
ing evidence in favor of the proponent’s position and evidence for the existence
of a true effect. In contrast to simply comparing p-values, the success of the
replication can be expressed in quantitative terms. Assuming that the experi-
ment in fact provoked the same underlying effect in both studies and data were
collected as outlined in the replication report, researchers should (ideally) now
have a stronger belief in the reported effect and its size.

5.2 Example 2

For the second example another replication from the ”Reproducibility Project”
was used. The original study was conducted by Williams and Bargh (2008)
and investigated cues of ”spatial distance on affect and evaluation”. The repli-
cation was performed by Jennifer Alana Joy-Gaba (Virginia Commonwealth
University), Russ Clay (University of Richmond) and Hayley Cleary (Virginia
Commonwealth University). The replication data, materials and final report
are available at https://osf.io/vnsqg/.

In study 4 of the original paper, Williams and Bargh (2008) have primed
84 participants in three different conditions. They hypothesized that different
primes for spatial distance will effect evaluations of perceived ”closeness” to
siblings, parents and hometown. The dependent variable was an index of ratings
to those three evaluations. They found a significant main effect of priming on
the ”index of emotional attachment to one’s nuclear family and hometown”

4The replication found interactions not present in the original study and was not an exact
replication of the original study. However, the method was similar enough to compare the
test statistics and use the Replication Bayes Factor. See Discussion for details.
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(F (2, 81) = 4.97, prep = .95 which equals p = .009, η2
p = .11 which corresponds

to f2 = .124).
The replication by Joy-Gaba, Clay and Cleary did not find the same main

effect in a sample of 125 participants (F (2, 122) = .24, p = .79, η2
p = .003919 or

f2 = .00393). Based on the p-values they concluded, that the replication was
not successful. In fact, if there was truly an effect η2

p > 0 and the replication
was a better (unaffected by publication bias) estimate of the true effect size,
neither the original nor the replication study would have had a chance to detect
the effect as they were helplessly underpowered.

But how much more likely is it, that the effect does in fact not exist? This
is the answer the Replication Bayes Factor can give: Br0 = 0.031. This means,
the data is about 32 times more likely under the hypothesis that the true effect
size is 0.

6 Discussion

The Replication Bayes Factor for F -tests in fixed-effect ANOVA designs devel-
oped in this paper is an extension of the work by Verhagen and Wagenmakers
(2014). It utilizes a Bayesian perspective on replications, namely using the re-
sults and uncertainty from the original study in the analysis of a replication
attempt. The approach outlined in this paper adapts the Replication Bayes
Factor from t- to F -tests and can be used to further extend the BFrep to other
tests as well and also to cases where different tests are to be compared.

The simulation studies have shown, that (a) the Metropolis-Hastings algo-
rithm is an adequate way to sample from the posterior distribution of the original
study and (b) the Replication Bayes Factor for F -tests is generally similar in
magnitude to the Replication Bayes Factor for t-tests when comparing two inde-
pendent groups/samples. The two examples finally should have facilitated the
understanding of the Replication Bayes Factor for F -tests and shown that it is
simple to apply it to a given replication attempt. R scripts for the computation
of the Replication Bayes Factors and for reproduction of the simulations and
examples from this paper are available on the first author’s website: ....5

As outlined in the explanation of the Replication Bayes Factor for F -tests
above, Cohen’s f2 was chosen as effect size measure. This limits its application
to fixed-effects ANOVAs with approximately equal cell sizes since the noncen-
trality parameter λ of the noncentral F -distribution is calculated differently
in cases of unbalanced designs or repeated measures ANOVAs. Steiger (2004)
outlines more complicated cases of ANOVA designs such as random-effects mod-
els and Repeated Mesaures ANOVAs. Further information is then required to
determine an effect size based on the observed F -statistic (e.g. cell sizes and
specific effects αj).

In the context of fixed-effect ANOVA designs, different F -statistics can gen-
erally be calculated. Of course, the Replication Bayes Factor can only take into
account the information contained in the statistics used for its computation.
The omnibus F -test for example does not contain information about either the
direction or the location of a relevant difference in means. This is the reason,
the ration between the Replication Bayes Factors for t- and F -tests was about
2 in the second simulation study.

5URL will be inserted after the anonymous peer-review.
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It should further be obvious, that the Replication Bayes Factor as detailed
and used here can only be applied in cases where the replication study is suf-
ficiently close to the original study from a theoretical and from an analytical
point of view. If, for example, different aspects of the effect are investigated in
the original and the replication study, perhaps using different manipulations, it
might not be sensible to use the Replication Bayes Factor. This is not a design
problem of the Bayes Factor but a general problem that also effects the simple
counting of significant results or a perspective using confidence intervals. In
each case researchers have to make sensible assumptions on the generalizabil-
ity of an empirical finding. This is a facet of the replicability/reproducability
debate that has not yet been covered in depth.

The Replication Bayes Factor introduced by Verhagen and Wagenmakers
(2014) and extended herein is one further index to evaluate the results of a
replication attempt. It is, obviously, not able to cover all questions and pitfalls
in the analysis of a replication. Instead it is a way to formally and transparently
integrate prior findings in the analysis within the Bayesian framework and allows
to quantatively assess the gained evidential value. It is further easy to apply
to frequentist results as it uses reported test statistics from the original and
replication study. To cover replications comprehensively, however, researchers
have to use different tools depending on the question asked. No single statistical
index is sufficient to globally assess the quality of a study or a theory, this is true
not only for p-values (Wasserstein and Lazar, 2016) but also for Bayes Factors.
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